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Scaling behavior of three-dimensional dendrites

Q. Liand C. Beckermann
Department of Mechanical Engineering, The University of lowa, lowa City, lowa 52242
(Received 8 September 1997

The scaling behavior of geometry parameters in three-dimensional dendritic growth is investigated through
a detailed measurement of the morphology of pure succinonitrile dendrites grown on the first microgravity
flight of the isothermal dendritic growth experimdiM. E. Glicksman, M. B. Koss, and E. A. Winsa, Phys.
Rev. Lett.73, 573(1993]. Measurements are performed of the integral parameters of a sidebranching dendrite,
such as the envelope shape, projection area, contour length, volume, surface area, and solid volume fraction.
The evidence presented here reveals that unique scaling relations exist between these geometry parameters and
the primary tip radius or speed in steady growth. These relations are valid far away from the tip, up to a
normalized distance equal to about the inverse of the tifePaumber. For the secondary arm envelope on the
sidebranch plane, a self-similar scaling behavior giverXgy/R=0.668¢/R)*%?is found, whereXy, is the
envelope width(or the secondary dendrite tip positjp is the distance away from the primary tip, aRds
the primary tip radius. The normalized projection afg&? and the normalized contour length/R demon-
strate an identical time dependence after some initial transient, which indicates that the interfacial length
concentratiorlJ/F is time independent and inversely proportional to the tip ra&u3he volumeV and the
surface are& of a dendrite can also be scaled to the primary tip raBiu# is noted that the interfacial area
concentrationA/V has a similar behavior and the same order valuéJAs. The experimental results are
compared to analytical predictiof&. Brener and D. Temkin, Phys. Rev.H, 351 (1995] and generally
found to be in good agreement. Finally, the internal solid volume fractions for various envelopes are deduced
from the volume measurements and found to be in good agreement with a simple heat transfer model.
[S1063-651%98)03403-5

PACS numbgs): 81.10.Aj, 81.10.Mx, 81.30.Fb

[. INTRODUCTION conducted under microgravity conditions, has generated
benchmark data for the validation of theories that consider
Dendrites are the most frequently observed growth moddiffusional transport of heat only.
when an alloy is solidified in a supercooled melt and are While the steady growth of a single dendrite tip in a uni-
encountered in most casting and welding processes. The nofermly supercooled melt is reasonably well understood,
linear growth processes leading to the spontaneous formationuch remains to be learned about the evolution of dendrite
of such a complicated pattern have been the subject of margidebranches away from the tip. In fact, a good understand-
theoretical, numerical, and experimental investigatibhs  ing of the sidebranch features and development is important
6]. for improving the engineering properties of materials that
The analysis of dendritic solidification is complex be- solidify dendritically because it is these sidebranches that
cause of the multitude of mechanisms that are responsible f@stablish the length scales and pattern of microsegregation.
the development of the microstructure. Two stages can b€uriously, until recently, the time-dependent behavior of
distinguished in dendritic solidificatior(i) the steady-state sidebranches was ignored in most theories and there are
propagation of the tip region, accounting for the formation ofmany questions that are not fully answered at the moment.
the main or primary stem, an@) the time-dependent evo- What is the branching mechanism? Do scaling parameters
lution of the secondary and tertiary sidebranches, a processxist that can characterize the sidebranctesthe whole
that leads to the formation of a dendrite envelope and estatslendrit¢ other than the sidebranch spacing, which is gener-
lishes the more obvious length scales of a dendrite. The tip iglly very difficult to measure in experiments? Is there a re-
the best-studied region of the dendrite. A number of theorietationship between the steady-state growth of the dendrite tip
have been developed for describing the steady-state growtind the time-dependent growth of the sidebranches? In other
of a single, branchless dendrite tip into an infinite, motion-words, can the lengths further back from the tip also be
less, supercooled liquii7—9]. Experimentally, the use of scaled with the tip radiuR?
transparent model substances such as succinon(SiN) In this paper we shall restrict our attention to the study of
has facilitated dendritic growth studies where tip velocitiesthe sidebranch evolution of single SCN dendrites that grow
and shapes could be accurately measured and then used alsegly into a three-dimensional volume of supercooled melt.
test of theory. In particular, the isothermal dendritic growthUsing images from the microgravity experiments of Glicks-
experiment(IDGE) of Glicksman, Koss, and WinsgL0], manet al,, we have measured not only the tip veloaityand
the tip radiusR, but also the secondary dendrite tip position
Xiip» the projection contour lengttd, and the projection area
*Author to whom correspondence should be addressed. FAXE as a function of the distance from the primary Zipn the
319-335-5669. Electronic address: becker@icaen.uiowa.edu  supercooling range 0R2AT<0.7 K. From these measure-
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ments, a simple model, based on some physical assumptiosglebranches generated by thermal fluctuations grows expo-
and geometry approximations, has been developed for estientially as a function of(r/R)(1/0)]Y? whereR is the tip
mating the volumeV and the surface are@ of dendrites. radius,r is the radial distance between a symmetric steady-
Finally, the behavior of two important integral parameters,state paraboloidal needle crys@lR=%(r/R)? and the in-

the interfacial area concentratidand the volume fraction terface in cylindrical coordinates=(r,¢) andZ, ando is a

f,, are derived from the measurements. Because the expegtability constant(ii) the characteristic wavelengtthe side-
ments were performed in a microgravity environment wherebranch spacing in units of the tip radius, is

gravity-driven convection was absent, our results can help in

the verification of existing theories and guide in the devel- A r\ 12
opment of theories that consider diffusional transport of heat R™ 77( 60 §> ; (2.1
only.

and (i) the relative width of the frequency distribution is
Il. PREVIOUS WORK Awlwy=(30/8r/R)Y* i.e., the frequency distribution be-
comes sharper with increasing radial distance from the.tip
By comparing the above theoretical predictions with the
experimental results of Huang and Glicksmial, Langer
. . . . “Pfound that purely thermal noise seems to be too small by one
pears to be Langer anq Melr-Krymbhaars margmal stapll- to two ordgrs of magnitude. However, the two-dimensional
ity theory [12—-14, which ascribes the evolution of side- model, which uses the same analytical technique and is

branches to an intrinsic morphological instability of the based on the same physical assumptions as the three-
needle dendrite, with the possible exception of the tip itselfdimensional theory, is in good agreement with two-

where the system could persist in a marginal state of interaimensional experiments6,15,16. This inconsistency

facial stap|l|ty. La.ter, Hua_ng anq G!'Cksméﬂ cgrned outa  ghows that three-dimensional dendrites are by far not as well
systematic experimental investigation of the sidebranch eVQinderstood as two-dimensional dendrites

lution of SCN dendrites. Their results provided insight into Recently, an approach has been developed by Hurlimann
such fundamental problems as the origin of sidebranch pers, -, [20] t,o experimentally investigate dendritic growth

turbations, the mechanism of sidebranch evolution, and thﬁ/ith special emphasis on the development of sidebranches

dynamics of sidebranch coarsening. The measurements WeLE | the coarsening process in regions far away from the den-

limited to the spacing of sidebranches only and cannot giV(?irite tip. They found that those parameters that characterize

any information about other important parameters such e sidebranches as independent parts of the dendrite, e.g.
the dendrite envelope geometry, the solidified volume, an he length, the amplitude, and the spacing of the éide- '

theA?urfaﬁe area. ble bi . di detailed branches, are not adequate parameters to describe the com-
ter these notable pioneering studies, more detailed €Xy oy shape of a dendrite. Therefore, an alternative set of pa-

periments investigating the typical sizes of sidebranche ameters was proposed: the contour leridththe proiection
have been performed in thin growth vessels with a thicknesgreal: and thg vglume/. of a dendrite rilr?torderptojcharac-
(k:)orr&pat_rable_ tho ;[jhe tip raotl;]us. Tt\<vNO t()j/_pes Of_ explerlme?k;cs facferize the integral behavior of the dendrite. Their experimen-

) e. IS l;]gu(ljs_te among e;e t(()j_' tlmtta)nsmn? gro;?/] Sl: al results for xenon dendrites show that these parameters are
'973' (I)f ?1” ntes %rowmg I\{V' oud 1S gr a:jnpe ror: e r?u “well reproducible and give two interesting relationshifis:

side of the growth vess¢ll5] and (i) dendrites where the F increases linearly witiJ, while the slopem is propor-
%onal toR and(ii) the volumeV of dendrites increases with

L2 (i.e., the length of a dendrit@ndR, i.e.,VxRL3. These

Tiller and co-workers[11] performed one of the first
guantitative investigations of dendrite sidebranch evolution
An early successful model of the sidebranch evolution ap

nisms such as heat pulsgs] or the oscillating flow of a

solution[16]. An important finding from these experiments scaling relations are supercooling independent, implying that

's that in the absence of an external disturbance, irreguldf,q yengrites are self-similar in the sidebranching region. Al-

s_ldebranches are obs.erved, the Wavelength_|s not well d hough the above-mentioned experiments were carried out in
fined, and the correlation between opposite sides of the den'ravit and in a very low supercooling regime (0.025 K
drite is weak; oppositely, in the presence of external pertur9 Y Y P g reg '

) . . ) -~ <<AT<0.170 K) and the conclusions have not yet been con-
bations, a region of regular sidebranches with a correlatio

. . : . irmed by other independent experiments, the idea of using
between sidebranches on opposite sides is observed. The , S
i X . . stich integral parameters as a set of indicators of overall den-
two-dimensional experimental results suggest that in threes .- . - :
. . o . . dritic growth behavior does represent a promising starting
dimensional dendritic growth the sidebranches of dendrites . : o LA
oint for further studies of dendritic solidification.

grown on ground would be more regular, because the naturdl Another important result in dendritic growth theory is the

convective flow acts as an external disturbance, than those . : ;
: . . . whole needle-crystal solution for three-dimensioriaD)
grown in a microgravity environment.

. dendritic growth, recently obtained by Brer@1]. For the

Theoretically, Langer and co-workers extended the anag ! L . .

. : - ip region, the existing 3D nonaxisymmetric model devel-
lytical techniques of Barbieri, Hong, and Landé] for the

. . ped by Ben Amar and Breng22] was used. The selected

steady-state selection problem to the dynamic problem of[fi) shape can be written. in cviindrical coordinates. as
dendritic sidebranching in both a two-dimensiof&8] and P P ' Y k
three-dimensional symmetric moddl9]. The basic assump- )
tion is that sidebranching is driven by selective amplification E ( r )_ _ (r/R)

— — m
of noise near the tip. The results of the three-dimensional R R’(ZS 2 +2 An(r7R)™ cogmé).
analysis show thati) the root-mean-square amplitude of (2.2
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tally observed sidebranches have much larger amplitudes
than can be explained by thermal noise in the framework of
the axisymmetric approach.

Brener and Temkih25] also discussed the strongly non-
linear growth behavior of sidebranches far away from the tip,
but where the sidebranches do not yet behave as free den-
drites. This self-similar regime has a large range for small
Pe, given by Z/R<1/Pe, where PevR/2a is the tip
Peclet numberyp, is the tip speed, and is the thermal dif-
fusivity. The competition between the sidebranches leads to
a spacing\s(Z/R) between the surviving or “active” side-
branches that is of the same order of magnitude as the length
of the sidebranchelg(Z/R). By estimating the temperature
field far away from the dendrite, using energy conservation
arguments, and assuming the selection criterion for the side-
branch tips to be the same as for a free dendrite, Brener and

FIG. 1. Schematic representation of a cross section of a 30¥emkin arrived at the scaling relations
needle crystal at a given distance from the primaryZip

Ns(ZIR)~I14(ZIR)~s(ZIR)~ZIR, (2.5
For a crystal with fourfold cubic symmetry, the first non-
negligible correction term to the parabdlaantsov solution wheres is the cross sectional area of a branch. These rela-
[23]) is the fourth-order harmoniém=4, A,=g). Brener tions imply that dendritic structures far from the primary tip
described the tail region behind the tip as a time-dependerdan be described by supercooling independent geometric pa-
two-dimensional problem of the motion of the cross sectiorrameters that are scaled with the primary tip radius, as al-
of the 3D tail. He found that if the size of the 2D pattéthe  ready suggested by the experimental work of Hurlimann
cross section of the tailis much smaller than a diffusion et al.[20].
length (at)*2, the diffusion field of the cross section satisfies The fact that dendrites, even far from the tip, are self-
the Laplace equation. This 2D Laplacian problem was solvedimilar and can be scaled wifR was further confirmed by
recently, both numerically and analytically, by Almgren, the experimental work of Bisang and Bilgrai6,27] on
Dai, and Hakim[24], who were interested in anisotropic xenon dendrites. They showed that the fractal dimension of
Hele-Shaw flow. Introducing their results to the 3D dendritethe contour of a sidebranching dendrite is the séeggial to
problem, the intermediate asymptotic tail shape is given inL.42 for all supercoolings over a range of more than two
the form of the arm widthY,, in Cartesian coordinates orders of magnitude in length scale. Obviously, the fractal
(X,Y,2) (as shown schematically in Fig):1 dimension is of the same nature as the integral parameters
used by Hurlimanret al. [20]. Bisang and Bilgranj26,27|
2/5 5 203 were also able to experimentally verify the tip shape relation
ﬂ (5 E) :(55) (ﬂ) (i) fl L (2.4) derived by Brenef21] as well as the position of the
RAR'R] 3R] Vop) \Xip) Sy, s221- first sidebranch theoretically predicted by Brener and
(2.9  Temkin[26]. The key conclusion from the latter finding is
that sidebranches are indeed initiated by thermal fluctuations.

so that the tip position of the armg;, is given by Since the experimental work of Hurlimarmt al. [20] and
Bisang and Bilgranj26,27] was limited to xenon dendrites,
X, 5 7\ 35/ o\ 15 it is important to verify the scaling relations reviewed above
2t _ (_ _) _) , (2.4 for another substance under different conditions and for
R 3R 02 other parameter ranges. The microgravity data for SCN of

Glicksman, Koss, and Wingd 0] provide this opportunity.

whereo,~o. In this paper we focus on the sidebranch behavior far from

The above needle-crystal solution does not account fothe tip, as this is the least studied region of a dendrite.
noise-induced sidebranching behavior. The description of
this behavior needs the solution of a time-dependent problem
for the noise-induced perturbation around the needle-crystal
shape[19]. Taking into account the nonaxisymmetric shape The images used in this investigation come from the
of a three-dimensional needle crystal and using an analyticdDGE launched by NASA in 1994 as part of the United
approach similar to Langdrl9], Brener and Temkif25]  States Microgravity PayloadQUJSMP-2. The IDGE experi-
then studied the time-dependent behavior of sidebranch foments were performed using ultrapure SCN. The process of
mation. According to Brener and Temkin, the root-mean-growing a dendrite starts by melting the SCN and lowering
square amplitude of sidebranches generated by thermal fluthe bath temperature to the desired supercooling. Once the
tuations grows exponentially as a function @f%¢'? ~ system thermally stabilizes at a predetermined supercooling
which is faster than in the axisymmetric case where the amlevel, a thermoelectric cooler is activated to initiate dendritic
plitude grows exponentially as a function BF4 o2 This  growth. At this point, 35-mm photographs are taken at regu-
important result is able to resolve the puzzle that experimenlar time intervals along two perpendicular optical paths. For

Ill. IMAGE ANALYSIS TECHNIQUE
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FIG. 2. Superimposed dendrite images taken at different times
(IDGE USMP-2 flight, AT=0.370 K, view 2. The time interval
between the images is 83.25 sec.

more detail about the IDGE experiment, please refer to Refs. 3
[10,28-31. X(mm)

The photographs in the form of pairs of digitized binary
images serve as the primary source of 3D dendrite informa- FIG. 3. Den_dri_te arr_nA reconstructed from_the images_in Fig. 2
tion used in this investigation. They are processed and an&nd rotated_to liein asu;lebranch plane. The interrupted lines are the
lyzed in the following manner. parabolas fitted to the tip.

As a first step, the images taken at the same supercooling
and from the same view but at different times are superimiransformation, the positions of the secondary dendrite tips
posed into one imagéFig. 2. Once the tip positions of can be easily identifiedFig. 4). Also, a more accurate pa-
different primary arms at different times are located in therabola is fitted to the tip to determine the tip radRisSince
superimposed dendrite image, it is easy to measure the préi€ tip shape is not exactly paraboloidal, the values of the tip
jected anglex between the primary arm and the stinger axisradiusR, deduced from the parabola fit, depend on the dis-
direction (indicated byZ’ in Fig. 2) as seen in each of the tance away from the ti, where the parabola is fit. Using a
two orthogonal images. Knowing a pair of such projectedregression technique as in Rg81], we then determined the
angles measured in the two perpendicular views for the saniép radiusR by extrapolating the values & to Z=0. In spite
arm, we can determine the orientation of this arm, i.e., th&f basing the present measurements on relatively low-
Eulerian angle of the growth velocity vector with respect to aresolution digital images, the present tip radii are in reason-
coordinate system aligned with the stinger tube axis, as wefble agreement with the results of Glicksneral.[29] who
as the orientation of one sidebranch plane. Due to the fourdsed much-higher-resolution imagesee Table )l Because
fold rotational symmetry, it does not matter which of the fourthe tip radius measurements of Glicksmeinal. are more
sidebranch planes is used. accurate, they are used in the following sections. The lower

After the orientation of the dendrite is determined, theresolution of the present images is not expected to influence
solid-liquid interface is tracked by marking it with a suffi- the measurement of the other quantities, as described next.
cient number of points such that the root region of the side- The measurements of the contour lengthand the pro-
branches can be identified. Then the coordinates of the poinjgction area- are performed using appropriate image analy-
on the interface are transformed by rotation and translation isis software with area and length measurement functidns.
such a way that the tip of the stinger is located at the originjs the length of the contour of the dendrite measured from the
the studied sidebranch plane is placed inX#plane of the tip to a distance&Z further backF is one-half of the area of
frame of reference, and the symmetry axis of one primaryihe projection of the dendrite as shown in Fig. 5. The quan-
arm is oriented along th2 axis (see Fig. 3. From this two- tities F andU are measured for both sides of the dendrite.
dimensional reconstruction, we make a preliminary fit of theSince the sidebranches do not always grow normal taZthe
tip region with a second-order polynomial equation and de-axis and their shapes are very complicatddandF cannot
termine more accurately the tip locations at different timesbe defined in a unique way everywhere as a functio .of
The tip speed can then be deduced from this procedure byhus we only measure the valuesfoindU between the tip
plotting the tip displacement versus times. The values listeé@nd the points designated by dots in Fig. 5, which correspond
in Table | are the same as those obtained by Glicksetah.  to valleys between two neighboring sidebranches. This way,
[29]. the functionsF(Z) andU(Z) are well defined.

Using the more accurate tip coordinates obtained from the An attempt is made to estimate the volume and surface
above method, we further translate the coordinate system strea of a 3D dendrite, based on a combination of actual
that all tips are located at the origisee Fig. 4 After this  measurements and some approximations. First, a 3D dendrite
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TABLE I. Tip radiusR and speed, for the four experiments analyzed in the present study: comparison
between the results of Glicksma al. [30] and our measurements.

Results AT=0.287K AT=0.370K AT=0.470K AT=0.609K
R (um), Glicksmanet al. 59 44 34 25

R (um), our results from low- 61 47 38 30
resolution imagesnot used

v, (um/seq, our results and those 8.4 13.6 22.7 44.1

of Glicksmanet al. are identical

can be considered as a combination of a primary stem antibns are made in this calculatiofi) Any secondary side-
secondary sidebranches. The total voluig, (or total sur-  branchi around the primary stem is also approximated by a
face arealy,) consists, therefore, of the volumé,, (or  paraboloid of revolution with a tip radiug; and a length.; .
surface ared\,) Of the primary stem and the volumg,,, (ii) The sidebranches are assumed to be periodic with a

(or surface ared\,,, of the sidebranches: wavelength(spacing \ that varies as a function &. (iii)
The sidebranches grow normal to the symmetry axs
Viotar= Vstenit Vbrans (3.18  axig. Now the key issue is the determination of the second-
ary arm spacing.
Atotar= Astenit Apran- (3.1b As mentioned in Sec. Il, Langefl9] has predicted,

hrough Eq.(2.1), the behavior of the branch spacing in his
hree-dimensional symmetric model. Transforminghe ra-
dial distance from the tip for the Ivantsov parabalato Z

The primary stem can be approximated by a paraboloid o}
revolution (2=2RZ). Its volume and surface area are then

given by (the axial distance away from the tipnd using the stability
z constanto~0.02[4], we have
Vgien= f mr?dZ=mwRZ? (3.29
0 MR=m(60)Y(2Z/IR)Y4~1.29Z/R)*?® (3.3
Asten= 3 TR?[(1+2Z/R)¥>~1]. (3.2D  This equation indicates that the secondary sidebranch spac-

. . ., ing can be correlated to the distance away from the tip by a
Now the problem is how to estimate the s_econdary S_'debower law \/R=a(Z/R), with an exponent of 0.25. By
branch volume and surface area. The following approxima-

8 1 1 1 1 1 Z(mm)

X{mm)

X(mm)

FIG. 5. Definitions of the projection arefa and the contour
FIG. 4. Transformation of Fig. 3 realized by locating all primary lengthU. The hatched area marks the area of projediioiThe arc
tips at the origin of the coordinate system. The interrupted line idength of the contour measured from the tip to the end of the hatch-
the tip parabola witiR=44 um. ing represents the corresponding contour length
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X Therefore, the total volume of the dendrite at the valley
S Z,(val) is given by

n
T
oy vtota,:szﬁ(va|)+4§ gxﬁLi (3.6a

and the total surface are@g,, is

Z,(val)
( 1+2 R

M|
T\ 8L,

—42 m(Nif2)2, (3.6b

)
Z6p) |

zoay

2 3/2
! — 2
p 4 Awta=7 TR - 1}

3

2
T 3

n

2\ 312
1+16—| -1

4 a2

FIG. 6. Schematic representation of some symbols involved inyhere the quantity 8]#(\;/2)? is the area occupied by the
the calculation of dendrite volume and surface area. sidebranches on the primary stem and is subtracted in the

. o _ ) total surface area calculation.
comparing the initial sidebranch spacing predicted by Eg.

(3.3) with the experimental results of Huang and Glicksman
[4], we found that the predicted valugd R~2.1 is slightly
lower than the measured R~ 3. Adjusting the constarat in A. Shape of the sidebranch envelope
Eq. (3.3) and making it consistent with the experimental data
of Huang and Glicksman, we obtain

IV. RESULTS AND DISCUSSIONS

An important parameter for characterizing the complex
morphology of a dendrite far from the tip is the envelope of
the growing sidebranches. This envelope represents a smooth
connection of all the “active” or surviving sidebranch tips,

] o ) where a branch is judged as active when it is longer than the
In our investigation, we have tried to measure the secondaryayt active branch closer to the tip. Its shape can be de-
sidebranch spaciny as a function ofz, including all S|de.-' scribed by the secondary tip positiog, (the distance away
branches. Although these measurements are very difficufom the primary axisas a function of the distance from the
due to the irregularity of the sidebranches of the de”d“teﬁrimary tipZ.

grown in mic_:rogravity, our preliminary results seem_to be’ Measurements of the secondary tip positiofg have
consistent with the prediction of E¢3.4). A more detailed peen performed on the 2D reconstructions of the images ob-
discussion of this issue will be provided in another papetained at different times for various supercoolingsT
[32]. The above adjusted equation is used in the following to_ 0.287, 0.370, 0.470, and 0.609.Kor a comparison of the
estimate the\x values in th_e cglculation of the volume and data from different supercoolings, we use the tip radtuzs
surface area of the dendrite sidebranches. _ a length scale to reduce the lengthandZ. Figure 7 shows

Assuming that the first sidebranch occursZa(tip)/R = o5 example of such an envelope obtained according to the
=10, thez-axis value of every sidebranch tp(tip) and 556 mentioned method at a supercooling of 0.370 K. It can
valley Z(val) can be determined from E(.4). The length  po seen that the shape of the envelope does not change at
L; of a sidebranch can be obtained from the shape of thjtterent times and is very symmetrical relative to the pri-
sidebranch envelope by taking the difference between thg a1y stem axis. The envelopes for other supercoolings show
envelope width Xi(tip) and the corresponding width e ‘same behavior. Therefore, taking into account all data
Xj(para) of the parabola fitted to the primary arm tip, i.e.,gptained at different times for both sides of a dendrite at all
Li=X;(tip) —Xi(para). Figure 6 gives schematically the gypercooling levels, the normalized envelope widlitR is

definition of all symbols inyolved here. Knowing the side- plotted against the normalized distance away from the tip
branch lengthL; and spacing\;, the volume and surface z/R on a log-log scale in Fig. 8.

area can be determined according to the paraboloid descrip- For 7/ R< 10, the data points actually represent the con-
tion. The total volumeVy,, and surface areApan are 0b- oy of the tip region where no sidebranching occurs. It can
tained by summing all sidebranches placed on the four sidgse clearly seen from Fig. 8 that the shape of the tip region is
branch planes as closer to Brener's nonaxisymmetric needle cry§gdl] than
to a parabola and strongly differs from that measured far
from the tip. Of course, an accurate measurement of the den-
drite tip shape needs much higher resolution images and is
beyond the scope of this paper. Here we restrict our attention
2\ 32 to the sidebranching region.
i _ For Z/R>10, a least-squares fit of the data, indicated by
1+16;2) 1}' (3.5 the line drawn in Fig. 8, shows that from a distarieR

MR~1.69Z/R)%%5 (3.9

n n
o™
Voa=42, aRLI=42 2APL, (353
1 1

n 2\2
2 A
Apran™ 421 3 77( 8_|_|)
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FIG. 7. Envelope delineated by active secondary arm @pE (

=0.370K).

or in terms of the secondary tip velocities,

v,=0.574,(Z/R) %14 (4.1b

wherev, is the speed of the primary tip. This result demon-
strates that the dendrite envelope, like the tip region, behaves
as a shape-preserving steady-state growth shape, at least on
the sidebranch plane. This conclusion has an important im-
plication for some models of equiaxed solidification such as
Beckermann and Wang’'s multiphase moj@3], because the
envelope is no longer hypothetical but a meaningful interface
that can be mathematically characterized by a growth law.

The maximum measurement range varies from about
Z/R=80 for AT=0.287 K toZ/R=250 for AT=0.609 K.
Using the tip radii and velocities in Table | ang=1.128
10° um?/sec[4], the corresponding inverse tip et num-
bers 1/Pe vary from 45For AT=0.287 K) to 205 (for AT
=0.609 K. Hence most of our experimental data are well
within the range ¥Z/R<1/Pe, for which self-similar side-
branching behavior was predicted by Brener and Temkin
[25]. Interestingly, the data that are beyond this regime still
follow the same scaling relatiofsee Fig. 8.

Comparing our experimental result X;,/R
=0.668@/R)%8®with the theoretical prediction of the scal-
ing exponent of unity predicted by Brener and TemK6]
for the length of the survivedor active sidebranches as a

~10 to 250(our maximum measurement range for the high-function of the distance from the tlsee Eq(2.9)], it can be

est supercooling the secondary tip positions for all den-

drites can be correlated by

Xiip/R=0.668 Z/R)%8>

(4.13

X/R

10

Nonaxisymmetric
peedle crystal

Xjg/R= 0.668(Z/R)"-8%°

10 100

seen that the present sidebranches grow somewhat more
slowly than predicted. This discrepancy probably comes
from the fact that theZz component of the heat flux is ne-
glected in the heat conservation equation leading to the scal-
ing relation given by Eq(2.5). In fact, the sidebranches do
not grow normally to the primary dendrite stef@ axis).
Instead, they always follow the steepest thermal gradient
normal to the ridges of the four fins of the needle crystal. We
have estimated that for 20Z2/R<<250 theZ component of
the heat flux varies from 24% to 9%. Therefore, the differ-
ence of 0.14 in the measured and predicted scaling exponents
for the envelope shape is not surprising. Recently, we have
numerically solved the three-dimensional heat equation in
the liquid around the envelope of a sidebranching dendrite
and found excellent agreement between the predicted enve-
lope shape and the present scaling relaf@s].

In order to compare with the experiments of Hurlimann
et al.[20], where the amplitude of the sidebrancigs(i.e.,
the normal distance between the secondary arm tips and a
parabola fitted to the primary dendrite)tipas measured as a
function of the parabola length (see Fig. 6 we have trans-
formed our experimental result,/R=0.668¢/R)%#*into
a relationship betweeh,, andl,. This transformation does
not have a closed-form analytical solution, but can be easily
performed numerically. The result is shown as a series of
dots in Fig. 9. For the range given by 45,/R<300 the
measurements can be well fitted by a linear function

hp/R=0.2221,/R)—2.32. 4.2

FIG. 8. Scaling relation between the normalized envelope width! his result differs strongly from the one obtained by Hurli-

X/R and the normalized distance away from theifR. The sym-

mann etal. for xenon dendrites: hp/R=2.8

bols represent all data obtained at different times for both sides of & 10~ 3( p/R)”g- However, the linear relation betweén
dendrite at four supercooling levelA T=0.287, 0.370, 0.470, and andl, agrees with the theoretical prediction of Brener and
0.609 K). Only the squares were used for fitting the scaling relation.Temkin [25] that the scaling exponent is unifgee above
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10000

F/R = 0.605(v t/R)L7
or

F/R2 = 0.605(Z/R)1.70

%
7
b N

Nonaxisymmetric
needle crystal

F/R?

1000 Parabola

AT=0287K
AT=0370K
AT=0470K
AT=0.609K

Scaling relation

z i """""""" Parabola
. Present result § i """"" Brener model [22]
———  Fitting function: hp/R = 0.222(1P/R) 2232 10 .
rrrrrrrrrrrrrr Hurlimann et al. [21}; by/R = 0.0028( Ry} 10 100 1000
ViR (or Z/R)

0.1 T

10 100

1/R . — .
P FIG. 10. Normalized projection aree/R? versus normalized

time v t/R (or Z/R).
FIG. 9. Amplitude of sidebranches versus the length of the pa-
rabola normalized with the tip radid® (a comparison between the For Comparison’ we include in F|g 10 the behavior of
present result and that of Hurlimaret al). F(Z) for the nonaxisymmetric needle crystal of Brefi2t],
which can be written as
Sinceh, andl , in parabolic coordinates correspond{and
Z in Cartesian coordinates, respectively, the approximations F/IR?~0.85Z/R)S. (4.4
that lead Brener and Temkin to obtain the scaling exponent
of unity for the length of the survived sidebranches as at can be seen that the experimental scaling exponent of 1.70
function ofZ appear to be more suitable in the framework ofjs quite close to the theoretical scaling exponent of 1.6 for
parabolic coordinates. Note that the neglect ofZheompo-  the nonaxisymmetric needle crystal of Brefi2]. This re-
nent of the heat flux is less severe in parabolic coordinateslects the fact that conservation laws require the projection
area of the needle crystal to be about the same as for a real
B. Length of the contour and area of projection dendrite with sidebranches. The difference of 0.1 between
the experimental exponent and the theoretical prediction

Measurements of the contour I_engﬂhan(_j the prolegt|on could be attributed to coarsening, which makes the primary
areaF have been performed at different times and different

supercooling levels according to the method described in
Sec. lll. We focus on the scaling relationship between thes
two parameters and the distance away from th&tipvhich

is equivalent to time&=Z/v,. The lengthU is reduced by U/R 0T
the tip radiusk and the are#& is normalized byR? in order T ATS03T0K
to detect similarity for different supercoolings. Figures 10 °  AT=0470K
and 11 give the results of the measurements at four differer o AT-0609K

supercooling levels in a log-log plot. 1000
It can be seen from Fig. 10 that all data for the normalizec

projection areaF/R? coincide for different supercoolings ~ {|

and can be fitted by a power law

Scaling relation

Parabola
F/R?>=0.605Z/R)*7° (4.33 o
or in terms of time UIR = 0.089(v Y/R)1- 70
ko or
FlRZ:O.GOSvtt/R)l'm. (4.3b RE: U/R = 0.08%Z/R)} 7
10 T
This result shows that the projection afeaif scaled byR?, 10 100 1000
has a supercooling independent relation with the normalize VR (or Z/R)

distanceZ/R (or timev,t/R), which can be well represented
from Z/R=20 to 250 by one power law. It implies that even  FIG. 11. Normalized contour lengthl/R versus normalized
such integral parameters as area can be scaledRvith time vt/R (or Z/R).
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stem thicken in diameter by filling in the liquid “troughs” 1

be_tween the branches, as already observed by Huang ai yre . AToosK  * AT-0370K
Glicksman[4]. 05
The data for the contour length, shown in Fig. 11, seem ° AT=04K o AT=060K
to also demonstrate a supercooling-independent behavior, a N
0.6 - - m=1/0.

though the data foAT=0.470 K somewhat deviate from the
others. Nevertheless, within the present measurement acc

racy it is reasonable to consider the relationship between th 0.4

normalized contour lengtiy/R and the normalized time
vt/R (or Z/R) as supercooling independent.

Unlike F/R?, the contour lengthy cannot be fitted by one
power law over the entire measurement region<{Z0R
<250). Only forZ/R>50 canU/R be correlated t@/R by

U/R=0.089Z/R)*70 (4.5
The difference in the fitting range can be explained by com

paring the behaviors oF/R?(Z/R) and U/R(Z/R) for a
parabolic dendrite, which are represented by dashed lines

0.2

200
vit/R (or Z/R)

FIG. 12. Normalized ratio of contour length to projection area
UR/F versus normalized time,t/R (or Z/R).

gupercoolings. Figure 12 confirms that after an initial tran-

Figs. 10 and 11, respectively. For a parabolic dendrite, théient stage Z/R>50), UR/F becomes a time-independent

projection ared is given by

V2
FI/R? 1= (ZIR)}5~0.94Z/R)*>. (4.6)

It can be seen that there is no large difference between Eq
(4.6) and(4.33 in the tip region. This means thBf R?(Z/R)
can easily change from the initial tip behavioE/R?
=0.94@Z/R)*%, to the steady-state sidebranching behavior
F/R?=0.605@Z/R)1"% On the other hand, the behavior of
U/R(Z/R) for a parabolic dendrite, which is given by

\/22 1+2Z +1 \/2Z+\/1+2Z

2 R YR R R
0.977

~1.1A( ) 4.7)

shows a large difference from that of a sidebranching den
drite in the region away from the tifsee Fig. 11 and Eq.
(4.5)]. Therefore,U/R(Z/R) changes later from the tip be-
havior to the sidebranching behavior.

1

u
R

z

R

constant.

Hurlimann et al. [20] have developed a simple model,
called a rod model, to explain the linear behavior-¢UJ).

In this model, the primary stem and the sidebranches are
approximated by cylindrical rods with the same diameter.
élthough this simple model successfully predicts a linear
rélationship betweefk andU, a more physical understand-
ing of the observed behavior has yet to be obtained.

It should be noted that the ratio bff F actually represents
an interfacial length concentration. It has the same dimension
(mm™Y) as the interfacial area concentrati@and may
qualitatively reflect the behavior 06. The experimental
finding U/F=0.147R implies that the larger the supercool-
ing AT, the higher the interfacial length or area concentra-
tion. This is compatible with the observation that a dendrite
grown at a higher supercooling exhibits a finer structure.

C. Surface area and volume

. In Sec. IV B we have confirmed that the projection dfea
and contour lengtiJ are well-reproducible quantities that
describe the overall behavior of dendrites far from the tip. To
obtain more information about dendrites it is necessary to

A comparison between the exponents of the power lawstudy the volume and surface area in three dimensions. Since

(4.33 and (4.5), shows thatU/R and F/R? have the same
time (or Z/R) dependence foZ/R>50. Dividing Eq. (4.5
by Eq. (4.39 yields

4.9

The above equation indicates that after an initial transien
(Z/IR>50), F increases linearly with increasing. The
slopem in the linear equatiofr =mU can be scaled by the
tip radiusR, resulting in a normalized slope of/R=6.8.
This result is in fair agreement with the data of Hurlimann
et al. for xenon dendrite§20], for which they found that
m/R=4.

The linear dependende=muU can be illustrated by plot-
ting the normalized ratio oRU/F versus the normalized
timevt/R (or Z/R) (Fig. 12 for all data obtained at the four

the direct measurement of the volume and surface area dur-
ing growth is not possible, we can only estimate their values
according to the method discussed in Sec. lll.

The formulas for calculating the volumé and surface
areaA of a dendrite are provided in Sec. lll. The sidebranch
length L;, tip radiusR, and sidebranch spacing can be
considered as experimental input in the estimate of the vol-
ume and surface area of the dendrites. This guarantees that
the present calculations are principally based on experimen-
tal measurements.

Figures 13 and 14 give the results of the calculations by
plotting the normalized volumé/R® and normalized surface
areaA/R? versus the normalized distancer time) Z/R
(=v4t/R), respectively. Fitting the data ff/R>30 by a
power law, we found that the behavior of the volume can be
described by

VIR®=2.70Z/R)?10 4.9
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08
V/R3 . Calculated from SR
— VIR3=270@/RP10 067
100000 0.4
0.2+
0 T T T
(V] 100 200 300 400
10000
v, /R (or Z/R)
FIG. 15. Normalized interfacial area concentrati®BR versus
normalized timevt/R (or Z/R).
with the Hurlimannet al. relation probably arises from the
1000

fact that the length. was taken as the distance between the
v,t/R (or ZIR) primary tip and the end of the stinger, which includes a

strong thermal interaction region at the root of dendrite. In

FIG. 13. Normalized dendrite volume/R® versus normalized Our case, the lengté is defined as the distance away from

time v,t/R (or Z/R). the tip and is within the range of no thermal interactions with
another primary stem.
and that of the surface arédaby The scaling exponent of 2.10 for the volurize9) is close
to the fractal dimension of a three-dimensional dendrite,
A/R*=1.83Z/R)*. (4.10  which is simply equal to 2. It is possible that the difference is

due to the approximations made in estimating the volume
from the measurementsee Sec. ). However, it is shown

. A ) : Yelow in Sec. IV D that within the range of the present mea-
dendrites far from the tip. By comparing E@.9) with the g, -ements a scaling exponent of 2.10 results in better agree-

experimental finding/=RL® of Hurlimannetal. [20], we et with a heat transfer model than an exponent of 2
note that our estimat¥/=2.7R*2>*° has a different dis- ;,0,1d.

tance dependence/¢Z>1) but has a similar, close to lin- oy Egs(4.9 and(4.10 we can deduce the behavior of
ear, relation taR. Note that our relation appears to be moreq interfacial area concentrati®has

plausible becausR®Z?! has units of M The discrepancy

Our measurements clearly indicate that the tip raéius
the only scaling parameter for the volume and surface area

S= é=0 68E (ZIR) 018 (4.1
v 0684 g .

R The above result shows that the interfacial area concentration
S is inversely proportional to the tip radiu® and slowly
decreases with increasirgyR. This behavior can be more
directly illustrated by plotting the normalized interfacial area
concentratiorSR versusZ/R, as shown in Fig. 15. The ex-
ponent—0.180 is close to the value of 0.25 predicted by
Langer[19] for the distance dependence of the wavelength
of the sidebranch instabilifysee Eqs(2.1) and(3.3)] that we

used in the present estimates of the surface area and volume.
Substituting Eq(3.4) into Eq. (4.11) yields

A/R?

10000 -

1000 ]

1
S=1.15- (ZIR)297. (4.12

t Clodtedion The exponent orZ/R is so small(0.07) that the distance
AIR?= 1 83@R)LS? dependence in Eq4.12 may be neglected. Then E@.12
implies that the interfacial area concentration is inversely
o A proportional to the secondary arm spacing and may be ap-
v{/R (or Z/R) proximated for 56cZ/R<300 by

FIG. 14. Normalized dendrite surface améR? versus normal- S~ 1_6 4.13

ized timevt/R (or Z/R).
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X 0.4

Spherical envelope f, Fitting envelope

Spherical envelope

03

0.2 1

0.1

0 50 1060 150 200 250 300

©=v,U/R (or Z/R)

FIG. 16. Schematic illustration of different envelopes of a den- FIG. 17. Volume fraction versus normalized grOWth distance for

drite (2D cross section different envelopes.

3 3
This result is consistent with the commonly employed simple Vsph: f W(E) :f 7T(U_tt) (4.148
one-dimensional plate model of secondary dendrite arms R® 3"\R 3 R/ '
[34], although the constant of proportionality is somewhat
different from 2. Introducing the formula for the dendrite volumigg. (4.9)],

A comparison between the interfacial area concentratiothe volume fractions for the two envelopes are given by
S and the interfacial length concentratiod /F) shows that
both of them behave similarly. In fact, the relatively weak \% 062
dependence o6 on Z/R in Eq. (4.11) suggests that the in- fy fit:V_mZZ'SQZ/R) ’ (4.153
terfacial area concentratid) like the interfacial length con-
centration, can be approximated as a constant with respect to
the distanceZ/R. In the range 108 Z/R<300, Eq.(4.1) f
gives S=0.3R~0.25R, which is consistent with the inter-
facial length concentration relatidd/F=0.15R and closer L . .
to the result of Hurlimanret al, U/F=0.25R. This com- The variation of the two volume fractions are plotted in

parison suggests that the interfacial area concentr&tiand Fh'g' ,172325; fuT)Ct'ﬁn r?f tfhg normallfed dlstgn%e away frorlw1
the interfacial length concentration are two equivalent pa—t e fip or both the fitting envelope an t'e spherica
rameters. envelope. It can be seen that the volume fraction decreases
with the growth distanc& (or the growth time). Obviously,
the fitting envelope generally results in higher volume frac-
D. Volume fraction tions than the spherical envelope. While E@s15 are scal-
. e . , , ing relations valid for any supercooling, the actual distance
In modeling solidification systems involving multiple . . . :

. X L h (or time) dependence changes with the tip radius and hence
equiaxed crystals, the fraction solid inside certain crystal enz nercoolin
velopes is a more useful parameter than the volume of a P ng. . .

) : . ! . The variation of the volume fraction for an equiaxed crys-
single sidebranching dendrite arm, as given by @&c) [34]. L . . :
tal inside a spherical envelope can be easily explained by

Therefore, we have calculated the solid volume fraction for danting a previously develoned model of equiaxed solidifi-
two different envelopes: a fitting envelope and a sphericafJI ping ap y P 9

o . : : Fation [34]. In this model, the liquid and solid inside the
envelope. The fitting envelope is defined as a revolution o . .
Sé)herlcal envelope are assumed to be uniformly at the melt-

the secondary tip envelope on the sidebranch plane aroun d h bv h ducti
theZ axis, as shown in Fig. 16. Its volume can be determine g temperature and any growth occurs by heat conduction at
' o he envelope into the surrounding supercooled liquid. Hence
from Eq. (4.13 through an integration .
an energy balance at the envelope surface can be written as

Vfit Z/IR X 2 Z 2.72
?Z f w ﬁ dZ~=~0.96 ﬁ . (4.143
0

\%
vsph— v, :3.8aZ/R)7O'90. (4.15bH
Vsph

AT df,  dVey
Aspﬂ(?ZLp Vsphm"—fv at | (4.16

The spherical envelope is chosen to correspond to an entivghereAqy,is the surface area of the spherical enveldps,
equiaxed crystal consisting of six orthogonal primary armshe thermal conductivityl. is the latent heap is the density,
(see Fig. 18 Since Eq.(4.9 gives the dendrite volume for AT is the supercooling, and is a heat diffusion length.
one primary arm only, it is multiplied by 6 to approximate Assuming quasisteady conditions and solving the differential
the volume of a whole crystal. The radius of the sphericalequation governing heat diffusion around a growing sphere,
envelope is taken to be the length of a primary arm; henceit can be shown that the temperature profile in the liquid
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outside the envelope is of an exponential nature and the hee 17
diffusion length is given by35] A BN Experimental correlation,
A Eq. (4-15b)
,[2 1% o \\},;\ Numerical solution of Eq. (4-18):
6=|1l-exp ——t|| —=[1—exp —2Per)] —, AT=0.287K
a Ut Uy AT=0370K
(4.1 - AT=0470K

where Pe is the tip R#et number and is the dimensionless
time r=vt/R=Z/R. Substituting Eq(4.17 into Eq.(4.16
and making some rearrangements, we obtain

0.1

T df,
——+f,=Q[1—exp —2 Per)] 1,

3 dr (4.18

whereQ)=AT/(L/c) is the dimensionless supercooling and
c is the specific heat. For SCN/c=23.8 K[4]. An initial
condition for Eq.(4.18 can be obtained by setting the vol-
ume of six paraboloidal dendrite tips of lendfl+ vt equal

to the volume of a spherical envelope of radiys, which
yields thatf,=1 at r=4.5. However, we found that the so-
lution is insensitive to the initial condition for=10. For
7<1/Pe, an approximate solution of E@.18 can be ob-
tained by setting exp{2 Per)~1—2 Per and is given by

0.01 vy e T
= v /R (or Z/R)

FIG. 18. Measured volume fractions for a spherical envelape
comparison between theoretical prediction and measurement re-
sults.

IV C). At larger times, corresponding te=1/Pe the numeri-
i@) —3 cally predicted volume fraction variation becomes supercool-
6Pd’ - ing dependent and approaches a constant value that is given
b
For >20, the last term in Eq4.19 can be neglected, in- d
dicating that the volume fraction varies with . Within the (4.20
present supercooling rangésee Table )l the prefactor

(3Q2/4 Pe) ranges from 4.1 to 3.9, showing that the superThis result simply states that in steady growth of an equiaxed

f (4.19

v

30 “1+91.1251
4pe” ‘

cooling dependence is weak. In fact, for®® the Ivantsov
solution [23] behaves ad)~Pe. Hence, within the self-
similar regime X 7<1/Pe, the approximate solutidd.19

crystal, the sensible heat available in the supercooled melt is
converted into latent heat to produce a dendritic crystal of a
certain internal solid volume fraction. Although the SCN

is indeed supercooling independent. Furthermore, the scalingendrites in the IDGE were generally grown for several mil-
exponent of—1 from the approximate solution of the heat limeters in length, no experimental data are available to
transfer model is reasonably close to the experimental valugerify the predicted long-time behavior. Nonetheless, the
(i.,e.,—0.9. good agreement at earlier times establishes considerable con-
In order to verify the above approximate solution and tofidence in both the present measurements and the model. It
illustrate the long-time behavior of the heat transfer modelshould be noted that variations of the above model are quite
we also solved Eq4.18 numerically. Figure 18 shows the popular in the simulation of microstructures in equiaxed al-
model predictions computed for the four supercoolings usetby castingg 34], but they have never been validated by ex-

in the present analysi§lable ) and compares them to the
experimental correlatioi4.15h as well as to the approxi-
mate solutionf,~47 1. Although we plot the experimental
correlation up tor= 300, it should be kept in mind that it is

only valid up tor<1/Pe and that 1/Pe is smaller than 300 for

the higher supercooling®.g., 1/Pe 205 for AT=0.609 K;
see Sec. IV A It can be seen that for<1/Pe, the numeri-
cally predicted variation of the volume fractidy with 7is

perimental measurements, as is done here.

V. CONCLUSIONS

A detailed measurement of the morphology of pure suc-
cinonitrile dendrites is performed using images from the first
microgravity flight of the IDGE to investigate the scaling
behavior of geometry parameters in three-dimensional den-

virtually supercooling independent. The agreement betweedritic growth. The results presented in this paper show that
the numerical solution of the heat transfer model and theinique scaling relations exist between the geometry param-
experimental correlation is good. For 88<1/Pe, the fit- eters and the primary tip radius in steady growth. The scaling
ting range of the present volume measurements, the scalinglations are valid in the nonlinear, self-similar sidebranch-
exponent that can be surmised from the plot of the numericahg region far from the primary tip £Z/R<1/Pe.

solution in Fig. 18 is closer to the experimental value of For the secondary arm envelope on the sidebranch plane,
—0.9 than to the value of 1 from the approximate solution the envelope widtior the secondary dendrite tip positjon
given by the first term of Eq4.19. Hence the heat transfer X, can be correlated to the distance away from the primary
model provides a reasonable explanation why the scalintip Z according toXy,/R=0.668@/R)%%* This indicates
exponent for the volume measuremefits., 2.1 [Eqg.(4.9] that the dendrite envelope growth is a shape-preserving
is somewhat larger than the theoretical value d6@e Sec. steady-state process. If the above relation is converted to
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parabolic tip coordinates, the length of the surviving secondeoncentrationA/V, deduced from the above calculations,
ary dendrite arms is found to vary linearly with distance demonstrates a relatively weak time dependence. Averaged
from the tip, which is in agreement with the analysis of over time,A/V shows a similar behavior and the same order
Brener and Temkih25]. value as the interfacial length concentratioh-.

The projection are& and the contour lengtt of a den- Solid volume fractions for two different envelopés fit-
drite on the sidebranch plane, after scaling R¥ and R, ting envelope and a spherical envelppave also been esti-
respectively, have their own supercooling-independent relamated. In our measurement range, the volume fractions for
tion with Z/R. After a transient stage, both of them can bethese two envelopes decrease with the normalized growth
described by a power law with the same exponent of 1.7Gtime v t/R in a supercooling-independent manner. For the
demonstrating the same time dependence. This result impliepherical envelope, the volume fraction variation based on
that the interfacial length concentratiblF is time indepen- the measurements is in good agreement with predictions
dent, after some initial transient, and inversely proportionafrom a simple heat transfer model.
to the tip radiusR. The exponent 1.7 is in reasonable agree-
ment with the theoretical value of 1.6 derived by Brener and
Temkin[25].

Calculations of the volum¥ and the surface area of a This work was supported by NASA under Contract No.
dendrite, based on the experimental measurements and solNEC8-94. The authors are indebted to Professor Glicksman
approximations, show that these parameters can also l# RPI and NASA for making the IDGE images available to
scaled to the tip radiuR. The scaling exponent for the vol- us. We also thank Kai Liu for his help with numerical cal-
ume is close to the theoretical value of 2. The interfacial are&ulations.
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