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Scaling behavior of three-dimensional dendrites

Q. Li and C. Beckermann*

Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa 52242
~Received 8 September 1997!

The scaling behavior of geometry parameters in three-dimensional dendritic growth is investigated through
a detailed measurement of the morphology of pure succinonitrile dendrites grown on the first microgravity
flight of the isothermal dendritic growth experiment@M. E. Glicksman, M. B. Koss, and E. A. Winsa, Phys.
Rev. Lett.73, 573~1993!#. Measurements are performed of the integral parameters of a sidebranching dendrite,
such as the envelope shape, projection area, contour length, volume, surface area, and solid volume fraction.
The evidence presented here reveals that unique scaling relations exist between these geometry parameters and
the primary tip radius or speed in steady growth. These relations are valid far away from the tip, up to a
normalized distance equal to about the inverse of the tip Pe´clet number. For the secondary arm envelope on the
sidebranch plane, a self-similar scaling behavior given byXtip /R50.668(Z/R)0.859 is found, whereXtip is the
envelope width~or the secondary dendrite tip position!, Z is the distance away from the primary tip, andR is
the primary tip radius. The normalized projection areaF/R2 and the normalized contour lengthU/R demon-
strate an identical time dependence after some initial transient, which indicates that the interfacial length
concentrationU/F is time independent and inversely proportional to the tip radiusR. The volumeV and the
surface areaA of a dendrite can also be scaled to the primary tip radiusR. It is noted that the interfacial area
concentrationA/V has a similar behavior and the same order value asU/F. The experimental results are
compared to analytical predictions@E. Brener and D. Temkin, Phys. Rev. E51, 351 ~1995!# and generally
found to be in good agreement. Finally, the internal solid volume fractions for various envelopes are deduced
from the volume measurements and found to be in good agreement with a simple heat transfer model.
@S1063-651X~98!03403-5#

PACS number~s!: 81.10.Aj, 81.10.Mx, 81.30.Fb
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I. INTRODUCTION

Dendrites are the most frequently observed growth m
when an alloy is solidified in a supercooled melt and
encountered in most casting and welding processes. The
linear growth processes leading to the spontaneous forma
of such a complicated pattern have been the subject of m
theoretical, numerical, and experimental investigations@1–
6#.

The analysis of dendritic solidification is complex b
cause of the multitude of mechanisms that are responsible
the development of the microstructure. Two stages can
distinguished in dendritic solidification:~i! the steady-state
propagation of the tip region, accounting for the formation
the main or primary stem, and~ii ! the time-dependent evo
lution of the secondary and tertiary sidebranches, a pro
that leads to the formation of a dendrite envelope and es
lishes the more obvious length scales of a dendrite. The t
the best-studied region of the dendrite. A number of theo
have been developed for describing the steady-state gro
of a single, branchless dendrite tip into an infinite, motio
less, supercooled liquid@7–9#. Experimentally, the use o
transparent model substances such as succinonitrile~SCN!
has facilitated dendritic growth studies where tip velocit
and shapes could be accurately measured and then use
test of theory. In particular, the isothermal dendritic grow
experiment~IDGE! of Glicksman, Koss, and Winsa@10#,
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conducted under microgravity conditions, has genera
benchmark data for the validation of theories that consi
diffusional transport of heat only.

While the steady growth of a single dendrite tip in a un
formly supercooled melt is reasonably well understoo
much remains to be learned about the evolution of dend
sidebranches away from the tip. In fact, a good understa
ing of the sidebranch features and development is impor
for improving the engineering properties of materials th
solidify dendritically because it is these sidebranches t
establish the length scales and pattern of microsegrega
Curiously, until recently, the time-dependent behavior
sidebranches was ignored in most theories and there
many questions that are not fully answered at the mom
What is the branching mechanism? Do scaling parame
exist that can characterize the sidebranches~or the whole
dendrite! other than the sidebranch spacing, which is gen
ally very difficult to measure in experiments? Is there a
lationship between the steady-state growth of the dendrite
and the time-dependent growth of the sidebranches? In o
words, can the lengths further back from the tip also
scaled with the tip radiusR?

In this paper we shall restrict our attention to the study
the sidebranch evolution of single SCN dendrites that gr
freely into a three-dimensional volume of supercooled m
Using images from the microgravity experiments of Glick
manet al., we have measured not only the tip velocityv t and
the tip radiusR, but also the secondary dendrite tip positio
Xtip , the projection contour lengthU, and the projection area
F as a function of the distance from the primary tipZ in the
supercooling range 0.2,DT,0.7 K. From these measure
:
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57 3177SCALING BEHAVIOR OF THREE-DIMENSIONAL DENDRITES
ments, a simple model, based on some physical assump
and geometry approximations, has been developed for
mating the volumeV and the surface areaA of dendrites.
Finally, the behavior of two important integral paramete
the interfacial area concentrationS and the volume fraction
f v , are derived from the measurements. Because the ex
ments were performed in a microgravity environment wh
gravity-driven convection was absent, our results can hel
the verification of existing theories and guide in the dev
opment of theories that consider diffusional transport of h
only.

II. PREVIOUS WORK

Tiller and co-workers@11# performed one of the firs
quantitative investigations of dendrite sidebranch evoluti
An early successful model of the sidebranch evolution
pears to be Langer and Mu¨ller-Krumbhaar’s marginal stabil
ity theory @12–14#, which ascribes the evolution of side
branches to an intrinsic morphological instability of th
needle dendrite, with the possible exception of the tip its
where the system could persist in a marginal state of in
facial stability. Later, Huang and Glicksman@4# carried out a
systematic experimental investigation of the sidebranch e
lution of SCN dendrites. Their results provided insight in
such fundamental problems as the origin of sidebranch
turbations, the mechanism of sidebranch evolution, and
dynamics of sidebranch coarsening. The measurements
limited to the spacing of sidebranches only and cannot g
any information about other important parameters such
the dendrite envelope geometry, the solidified volume,
the surface area.

After these notable pioneering studies, more detailed
periments investigating the typical sizes of sidebranc
have been performed in thin growth vessels with a thickn
comparable to the tip radius. Two types of experiments
be distinguished among these two-dimensional growth s
ies: ~i! dendrites growing without disturbance from the ou
side of the growth vessel@15# and ~ii ! dendrites where the
growth of the sidebranches was forced by external mec
nisms such as heat pulses@6# or the oscillating flow of a
solution @16#. An important finding from these experimen
is that in the absence of an external disturbance, irreg
sidebranches are observed, the wavelength is not well
fined, and the correlation between opposite sides of the d
drite is weak; oppositely, in the presence of external per
bations, a region of regular sidebranches with a correla
between sidebranches on opposite sides is observed.
two-dimensional experimental results suggest that in th
dimensional dendritic growth the sidebranches of dendr
grown on ground would be more regular, because the nat
convective flow acts as an external disturbance, than th
grown in a microgravity environment.

Theoretically, Langer and co-workers extended the a
lytical techniques of Barbieri, Hong, and Langer@17# for the
steady-state selection problem to the dynamic problem
dendritic sidebranching in both a two-dimensional@18# and
three-dimensional symmetric model@19#. The basic assump
tion is that sidebranching is driven by selective amplificat
of noise near the tip. The results of the three-dimensio
analysis show that~i! the root-mean-square amplitude
ns
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sidebranches generated by thermal fluctuations grows e
nentially as a function of@(r /R)(1/s)#1/2, whereR is the tip
radius,r is the radial distance between a symmetric stea
state paraboloidal needle crystalZ/R5 1

2 (r /R)2 and the in-
terface in cylindrical coordinatesr[(r ,f) andZ, ands is a
stability constant;~ii ! the characteristic wavelength~the side-
branch spacing!, in units of the tip radius, is

l

R
5pS 6s

r

RD 1/2

; ~2.1!

and ~iii ! the relative width of the frequency distribution
Dv/v05(3s/8r /R)1/4, i.e., the frequency distribution be
comes sharper with increasing radial distance from the tipr .

By comparing the above theoretical predictions with t
experimental results of Huang and Glicksman@4#, Langer
found that purely thermal noise seems to be too small by
to two orders of magnitude. However, the two-dimensio
model, which uses the same analytical technique and
based on the same physical assumptions as the th
dimensional theory, is in good agreement with tw
dimensional experiments@6,15,16#. This inconsistency
shows that three-dimensional dendrites are by far not as
understood as two-dimensional dendrites.

Recently, an approach has been developed by Hurlim
et al. @20# to experimentally investigate dendritic growt
with special emphasis on the development of sidebranc
and the coarsening process in regions far away from the d
drite tip. They found that those parameters that characte
the sidebranches as independent parts of the dendrite,
the length, the amplitude, and the spacing of the si
branches, are not adequate parameters to describe the
plex shape of a dendrite. Therefore, an alternative set of
rameters was proposed: the contour lengthU, the projection
areaF, and the volumeV of a dendrite, in order to charac
terize the integral behavior of the dendrite. Their experim
tal results for xenon dendrites show that these parameter
well reproducible and give two interesting relationships:~i!
F increases linearly withU, while the slopem is propor-
tional toR and~ii ! the volumeV of dendrites increases with
L3 ~i.e., the length of a dendrite! andR, i.e.,V}RL3. These
scaling relations are supercooling independent, implying t
the dendrites are self-similar in the sidebranching region.
though the above-mentioned experiments were carried ou
gravity and in a very low supercooling regime (0.025
,DT,0.170 K) and the conclusions have not yet been c
firmed by other independent experiments, the idea of us
such integral parameters as a set of indicators of overall d
dritic growth behavior does represent a promising start
point for further studies of dendritic solidification.

Another important result in dendritic growth theory is th
whole needle-crystal solution for three-dimensional~3D!
dendritic growth, recently obtained by Brener@21#. For the
tip region, the existing 3D nonaxisymmetric model dev
oped by Ben Amar and Brener@22# was used. The selecte
tip shape can be written, in cylindrical coordinates, as

Z

R S r

R
,f D52

~r /R!2

2
1( Am~r /R!m cos~mf!.

~2.2!
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3178 57Q. LI AND C. BECKERMANN
For a crystal with fourfold cubic symmetry, the first no
negligible correction term to the parabola~Ivantsov solution
@23#! is the fourth-order harmonic~m54, A45 1

88!. Brener
described the tail region behind the tip as a time-depend
two-dimensional problem of the motion of the cross sect
of the 3D tail. He found that if the size of the 2D pattern~the
cross section of the tail! is much smaller than a diffusion
length (at)1/2, the diffusion field of the cross section satisfi
the Laplace equation. This 2D Laplacian problem was sol
recently, both numerically and analytically, by Almgre
Dai, and Hakim@24#, who were interested in anisotrop
Hele-Shaw flow. Introducing their results to the 3D dendr
problem, the intermediate asymptotic tail shape is given
the form of the arm widthYw in Cartesian coordinate
(X,Y,Z) ~as shown schematically in Fig. 1!:

Yw

R S X

R
,

Z

RD5S 5

3

Z

RD 2/5S s

s2
D 1/5S X

Xtip
D 2/3E

x/xtip

1 ds

s2/3A12s4

~2.3!

so that the tip position of the armsXtip is given by

Xtip

R
5S 5

3

Z

RD 3/5S s

s2
D 1/5

, ~2.4!

wheres2's.
The above needle-crystal solution does not account

noise-induced sidebranching behavior. The description
this behavior needs the solution of a time-dependent prob
for the noise-induced perturbation around the needle-cry
shape@19#. Taking into account the nonaxisymmetric sha
of a three-dimensional needle crystal and using an analy
approach similar to Langer@19#, Brener and Temkin@25#
then studied the time-dependent behavior of sidebranch
mation. According to Brener and Temkin, the root-mea
square amplitude of sidebranches generated by thermal
tuations grows exponentially as a function ofZ2/5/s1/2,
which is faster than in the axisymmetric case where the
plitude grows exponentially as a function ofZ1/4/s1/2. This
important result is able to resolve the puzzle that experim

FIG. 1. Schematic representation of a cross section of a
needle crystal at a given distance from the primary tipZ.
nt
n

d

n

r
of
m
al

al

r-
-
c-

-

n-

tally observed sidebranches have much larger amplitu
than can be explained by thermal noise in the framework
the axisymmetric approach.

Brener and Temkin@25# also discussed the strongly non
linear growth behavior of sidebranches far away from the
but where the sidebranches do not yet behave as free
drites. This self-similar regime has a large range for sm
Pe, given by 1!Z/R!1/Pe, where Pe5v tR/2a is the tip
Péclet number,v t is the tip speed, anda is the thermal dif-
fusivity. The competition between the sidebranches lead
a spacingls(Z/R) between the surviving or ‘‘active’’ side-
branches that is of the same order of magnitude as the le
of the sidebranchesl s(Z/R). By estimating the temperatur
field far away from the dendrite, using energy conservat
arguments, and assuming the selection criterion for the s
branch tips to be the same as for a free dendrite, Brener
Temkin arrived at the scaling relations

ls~Z/R!; l s~Z/R!;s~Z/R!;Z/R, ~2.5!

wheres is the cross sectional area of a branch. These r
tions imply that dendritic structures far from the primary t
can be described by supercooling independent geometric
rameters that are scaled with the primary tip radius, as
ready suggested by the experimental work of Hurlima
et al. @20#.

The fact that dendrites, even far from the tip, are se
similar and can be scaled withR was further confirmed by
the experimental work of Bisang and Bilgram@26,27# on
xenon dendrites. They showed that the fractal dimension
the contour of a sidebranching dendrite is the same~equal to
1.42! for all supercoolings over a range of more than tw
orders of magnitude in length scale. Obviously, the frac
dimension is of the same nature as the integral parame
used by Hurlimannet al. @20#. Bisang and Bilgram@26,27#
were also able to experimentally verify the tip shape relat
~2.4! derived by Brener@21# as well as the position of the
first sidebranch theoretically predicted by Brener a
Temkin @26#. The key conclusion from the latter finding i
that sidebranches are indeed initiated by thermal fluctuatio

Since the experimental work of Hurlimannet al. @20# and
Bisang and Bilgram@26,27# was limited to xenon dendrites
it is important to verify the scaling relations reviewed abo
for another substance under different conditions and
other parameter ranges. The microgravity data for SCN
Glicksman, Koss, and Winsa@10# provide this opportunity.
In this paper we focus on the sidebranch behavior far fr
the tip, as this is the least studied region of a dendrite.

III. IMAGE ANALYSIS TECHNIQUE

The images used in this investigation come from t
IDGE launched by NASA in 1994 as part of the Unite
States Microgravity Payload~USMP-2!. The IDGE experi-
ments were performed using ultrapure SCN. The proces
growing a dendrite starts by melting the SCN and lower
the bath temperature to the desired supercooling. Once
system thermally stabilizes at a predetermined supercoo
level, a thermoelectric cooler is activated to initiate dendr
growth. At this point, 35-mm photographs are taken at re
lar time intervals along two perpendicular optical paths. F
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57 3179SCALING BEHAVIOR OF THREE-DIMENSIONAL DENDRITES
more detail about the IDGE experiment, please refer to R
@10,28–31#.

The photographs in the form of pairs of digitized bina
images serve as the primary source of 3D dendrite infor
tion used in this investigation. They are processed and a
lyzed in the following manner.

As a first step, the images taken at the same supercoo
and from the same view but at different times are super
posed into one image~Fig. 2!. Once the tip positions o
different primary arms at different times are located in t
superimposed dendrite image, it is easy to measure the
jected anglea between the primary arm and the stinger a
direction ~indicated byZ8 in Fig. 2! as seen in each of th
two orthogonal images. Knowing a pair of such project
angles measured in the two perpendicular views for the s
arm, we can determine the orientation of this arm, i.e.,
Eulerian angle of the growth velocity vector with respect to
coordinate system aligned with the stinger tube axis, as w
as the orientation of one sidebranch plane. Due to the fo
fold rotational symmetry, it does not matter which of the fo
sidebranch planes is used.

After the orientation of the dendrite is determined, t
solid-liquid interface is tracked by marking it with a suffi
cient number of points such that the root region of the si
branches can be identified. Then the coordinates of the po
on the interface are transformed by rotation and translatio
such a way that the tip of the stinger is located at the orig
the studied sidebranch plane is placed in theXZ plane of the
frame of reference, and the symmetry axis of one prim
arm is oriented along theZ axis ~see Fig. 3!. From this two-
dimensional reconstruction, we make a preliminary fit of t
tip region with a second-order polynomial equation and
termine more accurately the tip locations at different tim
The tip speed can then be deduced from this procedure
plotting the tip displacement versus times. The values lis
in Table I are the same as those obtained by Glicksmanet al.
@29#.

Using the more accurate tip coordinates obtained from
above method, we further translate the coordinate system
that all tips are located at the origin~see Fig. 4!. After this

FIG. 2. Superimposed dendrite images taken at different tim
~IDGE USMP-2 flight,DT50.370 K, view 2!. The time interval
between the images is 83.25 sec.
s.
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transformation, the positions of the secondary dendrite
can be easily identified~Fig. 4!. Also, a more accurate pa
rabola is fitted to the tip to determine the tip radiusR. Since
the tip shape is not exactly paraboloidal, the values of the
radiusR, deduced from the parabola fit, depend on the d
tance away from the tipZ, where the parabola is fit. Using
regression technique as in Ref.@31#, we then determined the
tip radiusR by extrapolating the values ofR to Z50. In spite
of basing the present measurements on relatively lo
resolution digital images, the present tip radii are in reas
able agreement with the results of Glicksmanet al. @29# who
used much-higher-resolution images~see Table I!. Because
the tip radius measurements of Glicksmanet al. are more
accurate, they are used in the following sections. The lo
resolution of the present images is not expected to influe
the measurement of the other quantities, as described n

The measurements of the contour lengthU and the pro-
jection areaF are performed using appropriate image ana
sis software with area and length measurement functionsU
is the length of the contour of the dendrite measured from
tip to a distanceZ further back.F is one-half of the area o
the projection of the dendrite as shown in Fig. 5. The qu
tities F and U are measured for both sides of the dendri
Since the sidebranches do not always grow normal to thZ
axis and their shapes are very complicated,U andF cannot
be defined in a unique way everywhere as a function ofZ.
Thus we only measure the values ofF andU between the tip
and the points designated by dots in Fig. 5, which corresp
to valleys between two neighboring sidebranches. This w
the functionsF(Z) andU(Z) are well defined.

An attempt is made to estimate the volume and surf
area of a 3D dendrite, based on a combination of ac
measurements and some approximations. First, a 3D den

s

FIG. 3. Dendrite armA reconstructed from the images in Fig.
and rotated to lie in a sidebranch plane. The interrupted lines are
parabolas fitted to the tip.
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TABLE I. Tip radiusR and speedv t for the four experiments analyzed in the present study: compar
between the results of Glicksmanet al. @30# and our measurements.

Results DT50.287 K DT50.370 K DT50.470 K DT50.609 K

R ~mm!, Glicksmanet al. 59 44 34 25
R ~mm!, our results from low-
resolution images~not used!

61 47 38 30

v t ~mm/sec!, our results and those
of Glicksmanet al. are identical

8.4 13.6 22.7 44.1
a

o
en

de
a

y a

h a

nd-

is

pac-
y a

ry
i tch-
can be considered as a combination of a primary stem
secondary sidebranches. The total volumeVtotal ~or total sur-
face areaAtotal! consists, therefore, of the volumeVstem ~or
surface areaAstem! of the primary stem and the volumeVbran
~or surface areaAbran! of the sidebranches:

Vtotal5Vstem1Vbran, ~3.1a!

Atotal5Astem1Abran. ~3.1b!

The primary stem can be approximated by a paraboloid
revolution (r 252RZ). Its volume and surface area are th
given by

Vstem5E
0

Z

pr 2dZ5pRZ2, ~3.2a!

Astem5 2
3 pR2@~112Z/R!3/221#. ~3.2b!

Now the problem is how to estimate the secondary si
branch volume and surface area. The following approxim

FIG. 4. Transformation of Fig. 3 realized by locating all prima
tips at the origin of the coordinate system. The interrupted line
the tip parabola withR544mm.
nd

f

-
-

tions are made in this calculation.~i! Any secondary side-
branchi around the primary stem is also approximated b
paraboloid of revolution with a tip radiusRi and a lengthLi .
~ii ! The sidebranches are assumed to be periodic wit
wavelength~spacing! l that varies as a function ofZ. ~iii !
The sidebranches grow normal to the symmetry axis~Z
axis!. Now the key issue is the determination of the seco
ary arm spacingl.

As mentioned in Sec. II, Langer@19# has predicted,
through Eq.~2.1!, the behavior of the branch spacing in h
three-dimensional symmetric model. Transformingr ~the ra-
dial distance from the tip for the Ivantsov parabola! into Z
~the axial distance away from the tip! and using the stability
constants'0.02 @4#, we have

l/R5p~6s!1/2~2Z/R!1/4'1.29~Z/R!0.25. ~3.3!

This equation indicates that the secondary sidebranch s
ing can be correlated to the distance away from the tip b
power law l/R5a(Z/R)b, with an exponent of 0.25. By

s

FIG. 5. Definitions of the projection areaF and the contour
lengthU. The hatched area marks the area of projectionF. The arc
length of the contour measured from the tip to the end of the ha
ing represents the corresponding contour lengthU.
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57 3181SCALING BEHAVIOR OF THREE-DIMENSIONAL DENDRITES
comparing the initial sidebranch spacing predicted by
~3.3! with the experimental results of Huang and Glicksm
@4#, we found that the predicted valuel/R'2.1 is slightly
lower than the measuredl/R'3. Adjusting the constanta in
Eq. ~3.3! and making it consistent with the experimental da
of Huang and Glicksman, we obtain

l/R'1.69~Z/R!0.25. ~3.4!

In our investigation, we have tried to measure the second
sidebranch spacingl as a function ofZ, including all side-
branches. Although these measurements are very diffi
due to the irregularity of the sidebranches of the dendr
grown in microgravity, our preliminary results seem to
consistent with the prediction of Eq.~3.4!. A more detailed
discussion of this issue will be provided in another pa
@32#. The above adjusted equation is used in the following
estimate thel values in the calculation of the volume an
surface area of the dendrite sidebranches.

Assuming that the first sidebranch occurs atZ1(tip)/R
510, thez-axis value of every sidebranch tipZi(tip) and
valley Zi(val) can be determined from Eq.~3.4!. The length
Li of a sidebranch can be obtained from the shape of
sidebranch envelope by taking the difference between
envelope width Xi(tip) and the corresponding widt
Xi(para) of the parabola fitted to the primary arm tip, i.
Li5Xi(tip)2Xi(para). Figure 6 gives schematically th
definition of all symbols involved here. Knowing the sid
branch lengthLi and spacingl i , the volume and surface
area can be determined according to the paraboloid des
tion. The total volumeVbran and surface areaAbran are ob-
tained by summing all sidebranches placed on the four s
branch planes as

Vbran54(
1

n

pRiLi
254(

1

n
p

8
l i

2Li , ~3.5a!

Abran54(
1

n
2

3
pS l i

2

8Li
D 2F S 1116

Li
2

l i
2D 3/2

21G . ~3.5b!

FIG. 6. Schematic representation of some symbols involved
the calculation of dendrite volume and surface area.
.

ry

lt
s

r
o

e
e

,

ip-

e-

Therefore, the total volume of the dendrite at the vall
Zn(val) is given by

Vtotal5pRZn
2~val!14(

1

n
p

8
l i

2Li ~3.6a!

and the total surface areaAtotal is

Atotal5
2

3
pR2F S 112

Zn~val!

R D 3/2

21G
14(

1

n
2

3
pS l i

2

8Li
D 2F S 1116

Li
2

l i
2D 3/2

21G
24(

1

n

p~l i /2!2, ~3.6b!

where the quantity 4(1
np(l i /2)2 is the area occupied by th

sidebranches on the primary stem and is subtracted in
total surface area calculation.

IV. RESULTS AND DISCUSSIONS

A. Shape of the sidebranch envelope

An important parameter for characterizing the comp
morphology of a dendrite far from the tip is the envelope
the growing sidebranches. This envelope represents a sm
connection of all the ‘‘active’’ or surviving sidebranch tips
where a branch is judged as active when it is longer than
next active branch closer to the tip. Its shape can be
scribed by the secondary tip positionsXtip ~the distance away
from the primary axis! as a function of the distance from th
primary tip Z.

Measurements of the secondary tip positionsXtip have
been performed on the 2D reconstructions of the images
tained at different times for various supercoolings~DT
50.287, 0.370, 0.470, and 0.609 K!. For a comparison of the
data from different supercoolings, we use the tip radiusR as
a length scale to reduce the lengthsX andZ. Figure 7 shows
an example of such an envelope obtained according to
above-mentioned method at a supercooling of 0.370 K. It
be seen that the shape of the envelope does not chan
different times and is very symmetrical relative to the p
mary stem axis. The envelopes for other supercoolings s
the same behavior. Therefore, taking into account all d
obtained at different times for both sides of a dendrite at
supercooling levels, the normalized envelope widthX/R is
plotted against the normalized distance away from the
Z/R on a log-log scale in Fig. 8.

For Z/R,10, the data points actually represent the co
tour of the tip region where no sidebranching occurs. It c
be clearly seen from Fig. 8 that the shape of the tip regio
closer to Brener’s nonaxisymmetric needle crystal@21# than
to a parabola and strongly differs from that measured
from the tip. Of course, an accurate measurement of the d
drite tip shape needs much higher resolution images an
beyond the scope of this paper. Here we restrict our atten
to the sidebranching region.

For Z/R.10, a least-squares fit of the data, indicated
the line drawn in Fig. 8, shows that from a distanceZ/R

in
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3182 57Q. LI AND C. BECKERMANN
510 to 250~our maximum measurement range for the hig
est supercooling!, the secondary tip positions for all den
drites can be correlated by

Xtip /R50.668~Z/R!0.859 ~4.1a!

FIG. 7. Envelope delineated by active secondary arm tips (DT
50.370 K).

FIG. 8. Scaling relation between the normalized envelope w
X/R and the normalized distance away from the tipZ/R. The sym-
bols represent all data obtained at different times for both sides
dendrite at four supercooling levels~DT50.287, 0.370, 0.470, and
0.609 K!. Only the squares were used for fitting the scaling relati
-

or in terms of the secondary tip velocitiesv2 ,

v250.574v t~Z/R!20.141, ~4.1b!

wherev t is the speed of the primary tip. This result demo
strates that the dendrite envelope, like the tip region, beha
as a shape-preserving steady-state growth shape, at lea
the sidebranch plane. This conclusion has an important
plication for some models of equiaxed solidification such
Beckermann and Wang’s multiphase model@33#, because the
envelope is no longer hypothetical but a meaningful interfa
that can be mathematically characterized by a growth law

The maximum measurement range varies from ab
Z/R580 for DT50.287 K toZ/R5250 for DT50.609 K.
Using the tip radii and velocities in Table I anda51.128
105 mm2/sec@4#, the corresponding inverse tip Pe´clet num-
bers 1/Pe vary from 450~for DT50.287 K! to 205 ~for DT
50.609 K!. Hence most of our experimental data are w
within the range 1!Z/R!1/Pe, for which self-similar side-
branching behavior was predicted by Brener and Tem
@25#. Interestingly, the data that are beyond this regime s
follow the same scaling relation~see Fig. 8!.

Comparing our experimental result Xtip /R
50.668(Z/R)0.859 with the theoretical prediction of the sca
ing exponent of unity predicted by Brener and Temkin@26#
for the length of the survived~or active! sidebranches as
function of the distance from the tip@see Eq.~2.5!#, it can be
seen that the present sidebranches grow somewhat m
slowly than predicted. This discrepancy probably com
from the fact that theZ component of the heat flux is ne
glected in the heat conservation equation leading to the s
ing relation given by Eq.~2.5!. In fact, the sidebranches d
not grow normally to the primary dendrite stem~Z axis!.
Instead, they always follow the steepest thermal grad
normal to the ridges of the four fins of the needle crystal. W
have estimated that for 20,Z/R,250 theZ component of
the heat flux varies from 24% to 9%. Therefore, the diffe
ence of 0.14 in the measured and predicted scaling expon
for the envelope shape is not surprising. Recently, we h
numerically solved the three-dimensional heat equation
the liquid around the envelope of a sidebranching dend
and found excellent agreement between the predicted e
lope shape and the present scaling relation@33#.

In order to compare with the experiments of Hurlima
et al. @20#, where the amplitude of the sidebrancheshp ~i.e.,
the normal distance between the secondary arm tips an
parabola fitted to the primary dendrite tip! was measured as
function of the parabola lengthl p ~see Fig. 6!, we have trans-
formed our experimental resultXtip /R50.668(Z/R)0.859 into
a relationship betweenhp and l p . This transformation does
not have a closed-form analytical solution, but can be ea
performed numerically. The result is shown as a series
dots in Fig. 9. For the range given by 15, l p /R,300 the
measurements can be well fitted by a linear function

hp /R50.222~ l p /R!22.32. ~4.2!

This result differs strongly from the one obtained by Hur
mann et al. for xenon dendrites: hp /R52.8
31023( l p /R)1.78. However, the linear relation betweenhp
and l p agrees with the theoretical prediction of Brener a
Temkin @25# that the scaling exponent is unity~see above!.

h

a

.
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Sincehp andl p in parabolic coordinates correspond toX and
Z in Cartesian coordinates, respectively, the approximati
that lead Brener and Temkin to obtain the scaling expon
of unity for the length of the survived sidebranches as
function ofZ appear to be more suitable in the framework
parabolic coordinates. Note that the neglect of theZ compo-
nent of the heat flux is less severe in parabolic coordina

B. Length of the contour and area of projection

Measurements of the contour lengthU and the projection
areaF have been performed at different times and differ
supercooling levels according to the method described
Sec. III. We focus on the scaling relationship between th
two parameters and the distance away from the tipZ, which
is equivalent to timet5Z/v t . The lengthU is reduced by
the tip radiusR and the areaF is normalized byR2 in order
to detect similarity for different supercoolings. Figures
and 11 give the results of the measurements at four diffe
supercooling levels in a log-log plot.

It can be seen from Fig. 10 that all data for the normaliz
projection areaF/R2 coincide for different supercooling
and can be fitted by a power law

F/R250.605~Z/R!1.70 ~4.3a!

or in terms of time

F/R250.605~v tt/R!1.70. ~4.3b!

This result shows that the projection areaF, if scaled byR2,
has a supercooling independent relation with the normali
distanceZ/R ~or time v tt/R!, which can be well represente
from Z/R520 to 250 by one power law. It implies that eve
such integral parameters as area can be scaled withR.

FIG. 9. Amplitude of sidebranches versus the length of the
rabola normalized with the tip radiusR ~a comparison between th
present result and that of Hurlimannet al.!.
s
nt
a
f

s.

t
in
e

nt

d

d

For comparison, we include in Fig. 10 the behavior
F(Z) for the nonaxisymmetric needle crystal of Brener@21#,
which can be written as

F/R2'0.85~Z/R!1.6. ~4.4!

It can be seen that the experimental scaling exponent of 1
is quite close to the theoretical scaling exponent of 1.6
the nonaxisymmetric needle crystal of Brener@21#. This re-
flects the fact that conservation laws require the project
area of the needle crystal to be about the same as for a
dendrite with sidebranches. The difference of 0.1 betw
the experimental exponent and the theoretical predic
could be attributed to coarsening, which makes the prim

-

FIG. 10. Normalized projection areaF/R2 versus normalized
time v tt/R ~or Z/R!.

FIG. 11. Normalized contour lengthU/R versus normalized
time v tt/R ~or Z/R!.
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3184 57Q. LI AND C. BECKERMANN
stem thicken in diameter by filling in the liquid ‘‘troughs’
between the branches, as already observed by Huang
Glicksman@4#.

The data for the contour lengthU, shown in Fig. 11, seem
to also demonstrate a supercooling-independent behavio
though the data forDT50.470 K somewhat deviate from th
others. Nevertheless, within the present measurement a
racy it is reasonable to consider the relationship between
normalized contour lengthU/R and the normalized time
v tt/R ~or Z/R! as supercooling independent.

Unlike F/R2, the contour lengthU cannot be fitted by one
power law over the entire measurement region (10,Z/R
,250). Only forZ/R.50 canU/R be correlated toZ/R by

U/R50.089~Z/R!1.70. ~4.5!

The difference in the fitting range can be explained by co
paring the behaviors ofF/R2(Z/R) and U/R(Z/R) for a
parabolic dendrite, which are represented by dashed line
Figs. 10 and 11, respectively. For a parabolic dendrite,
projection areaF is given by

F/R25
&

1.5
~Z/R!1.5'0.94~Z/R!1.5. ~4.6!

It can be seen that there is no large difference between
~4.6! and~4.3a! in the tip region. This means thatF/R2(Z/R)
can easily change from the initial tip behavior,F/R2

50.94(Z/R)1.5, to the steady-state sidebranching behav
F/R250.605(Z/R)1.70. On the other hand, the behavior
U/R(Z/R) for a parabolic dendrite, which is given by

U

R
5

1

2 FA2
Z

R S 112
Z

RD1 lnSA2
Z

R
1A112

Z

RD G
'1.14S Z

RD 0.977

, ~4.7!

shows a large difference from that of a sidebranching d
drite in the region away from the tip@see Fig. 11 and Eq
~4.5!#. Therefore,U/R(Z/R) changes later from the tip be
havior to the sidebranching behavior.

A comparison between the exponents of the power la
~4.3a! and ~4.5!, shows thatU/R and F/R2 have the same
time ~or Z/R! dependence forZ/R.50. Dividing Eq. ~4.5!
by Eq. ~4.3a! yields

U/R

F/R2 50.147. ~4.8!

The above equation indicates that after an initial trans
(Z/R.50), F increases linearly with increasingU. The
slopem in the linear equationF5mU can be scaled by the
tip radiusR, resulting in a normalized slope ofm/R56.8.
This result is in fair agreement with the data of Hurlima
et al. for xenon dendrites@20#, for which they found that
m/R54.

The linear dependenceF5mU can be illustrated by plot-
ting the normalized ratio ofRU/F versus the normalized
time v tt/R ~or Z/R! ~Fig. 12! for all data obtained at the fou
nd

al-
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supercoolings. Figure 12 confirms that after an initial tra
sient stage (Z/R.50), UR/F becomes a time-independe
constant.

Hurlimann et al. @20# have developed a simple mode
called a rod model, to explain the linear behavior ofF(U).
In this model, the primary stem and the sidebranches
approximated by cylindrical rods with the same diamet
Although this simple model successfully predicts a line
relationship betweenF andU, a more physical understand
ing of the observed behavior has yet to be obtained.

It should be noted that the ratio ofU/F actually represents
an interfacial length concentration. It has the same dimens
(mm21) as the interfacial area concentrationS and may
qualitatively reflect the behavior ofS. The experimental
finding U/F50.147/R implies that the larger the supercoo
ing DT, the higher the interfacial length or area concent
tion. This is compatible with the observation that a dendr
grown at a higher supercooling exhibits a finer structure.

C. Surface area and volume

In Sec. IV B we have confirmed that the projection areaF
and contour lengthU are well-reproducible quantities tha
describe the overall behavior of dendrites far from the tip.
obtain more information about dendrites it is necessary
study the volume and surface area in three dimensions. S
the direct measurement of the volume and surface area
ing growth is not possible, we can only estimate their valu
according to the method discussed in Sec. III.

The formulas for calculating the volumeV and surface
areaA of a dendrite are provided in Sec. III. The sidebran
length Li , tip radiusR, and sidebranch spacingl i can be
considered as experimental input in the estimate of the
ume and surface area of the dendrites. This guarantees
the present calculations are principally based on experim
tal measurements.

Figures 13 and 14 give the results of the calculations
plotting the normalized volumeV/R3 and normalized surface
area A/R2 versus the normalized distance~or time! Z/R
(5v tt/R), respectively. Fitting the data forZ/R.30 by a
power law, we found that the behavior of the volume can
described by

V/R352.70~Z/R!2.10 ~4.9!

FIG. 12. Normalized ratio of contour length to projection ar
UR/F versus normalized timev tt/R ~or Z/R!.
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57 3185SCALING BEHAVIOR OF THREE-DIMENSIONAL DENDRITES
and that of the surface areaA by

A/R251.83~Z/R!1.92. ~4.10!

Our measurements clearly indicate that the tip radiusR is
the only scaling parameter for the volume and surface are
dendrites far from the tip. By comparing Eq.~4.9! with the
experimental findingV}RL3 of Hurlimann et al. @20#, we
note that our estimateV52.70R0.9Z2.10 has a different dis-
tance dependence (V}Z2.10) but has a similar, close to lin
ear, relation toR. Note that our relation appears to be mo
plausible becauseR0.9Z2.1 has units of m3. The discrepancy

FIG. 13. Normalized dendrite volumeV/R3 versus normalized
time v tt/R ~or Z/R!.

FIG. 14. Normalized dendrite surface areaA/R2 versus normal-
ized timev tt/R ~or Z/R!.
of

with the Hurlimannet al. relation probably arises from th
fact that the lengthL was taken as the distance between
primary tip and the end of the stinger, which includes
strong thermal interaction region at the root of dendrite.
our case, the lengthZ is defined as the distance away fro
the tip and is within the range of no thermal interactions w
another primary stem.

The scaling exponent of 2.10 for the volume~4.9! is close
to the fractal dimension of a three-dimensional dendr
which is simply equal to 2. It is possible that the difference
due to the approximations made in estimating the volu
from the measurements~see Sec. III!. However, it is shown
below in Sec. IV D that within the range of the present me
surements a scaling exponent of 2.10 results in better ag
ment with a heat transfer model than an exponent o
would.

From Eqs.~4.9! and~4.10! we can deduce the behavior o
the interfacial area concentrationS as

S5
A

V
50.68

1

R
~Z/R!20.18. ~4.11!

The above result shows that the interfacial area concentra
S is inversely proportional to the tip radiusR and slowly
decreases with increasingZ/R. This behavior can be more
directly illustrated by plotting the normalized interfacial ar
concentrationSR versusZ/R, as shown in Fig. 15. The ex
ponent20.180 is close to the value of20.25 predicted by
Langer @19# for the distance dependence of the wavelen
of the sidebranch instability@see Eqs.~2.1! and~3.3!# that we
used in the present estimates of the surface area and vol
Substituting Eq.~3.4! into Eq. ~4.11! yields

S51.15
1

l
~Z/R!0.07. ~4.12!

The exponent onZ/R is so small~0.07! that the distance
dependence in Eq.~4.12! may be neglected. Then Eq.~4.12!
implies that the interfacial area concentration is invers
proportional to the secondary arm spacing and may be
proximated for 50,Z/R,300 by

S'
1.6

l
. ~4.13!

FIG. 15. Normalized interfacial area concentrationSR versus
normalized timev tt/R ~or Z/R!.
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3186 57Q. LI AND C. BECKERMANN
This result is consistent with the commonly employed sim
one-dimensional plate model of secondary dendrite a
@34#, although the constant of proportionality is somewh
different from 2.

A comparison between the interfacial area concentra
S and the interfacial length concentration (U/F) shows that
both of them behave similarly. In fact, the relatively we
dependence ofS on Z/R in Eq. ~4.11! suggests that the in
terfacial area concentrationS, like the interfacial length con-
centration, can be approximated as a constant with respe
the distanceZ/R. In the range 100<Z/R<300, Eq.~4.11!
gives S50.3/R;0.25/R, which is consistent with the inter
facial length concentration relationU/F50.15/R and closer
to the result of Hurlimannet al., U/F50.25/R. This com-
parison suggests that the interfacial area concentrationS and
the interfacial length concentration are two equivalent
rameters.

D. Volume fraction

In modeling solidification systems involving multipl
equiaxed crystals, the fraction solid inside certain crystal
velopes is a more useful parameter than the volume o
single sidebranching dendrite arm, as given by Eq.~4.9! @34#.
Therefore, we have calculated the solid volume fraction
two different envelopes: a fitting envelope and a spher
envelope. The fitting envelope is defined as a revolution
the secondary tip envelope on the sidebranch plane aro
theZ axis, as shown in Fig. 16. Its volume can be determin
from Eq. ~4.1a! through an integration

Vfit

R3 5E
0

Z/R

pS X

RD 2

dZ'0.964S Z

RD 2.72

. ~4.14a!

The spherical envelope is chosen to correspond to an e
equiaxed crystal consisting of six orthogonal primary ar
~see Fig. 16!. Since Eq.~4.9! gives the dendrite volume fo
one primary arm only, it is multiplied by 6 to approxima
the volume of a whole crystal. The radius of the spheri
envelope is taken to be the length of a primary arm; hen

FIG. 16. Schematic illustration of different envelopes of a de
drite ~2D cross section!.
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Vsph

R3 5
4

3
pS Z

RD 3

5
4

3
pS v tt

R D 3

. ~4.14b!

Introducing the formula for the dendrite volume@Eq. ~4.9!#,
the volume fractions for the two envelopes are given by

f v fit5
V

Vfit
52.80~Z/R!20.62, ~4.15a!

f v sph5
V

Vsph
53.86~Z/R!20.90. ~4.15b!

The variation of the two volume fractions are plotted
Fig. 17 as a function of the normalized distance away fr
the tip Z/R for both the fitting envelope and the spheric
envelope. It can be seen that the volume fraction decre
with the growth distanceZ ~or the growth timet!. Obviously,
the fitting envelope generally results in higher volume fra
tions than the spherical envelope. While Eqs.~4.15! are scal-
ing relations valid for any supercooling, the actual distan
~or time! dependence changes with the tip radius and he
supercooling.

The variation of the volume fraction for an equiaxed cry
tal inside a spherical envelope can be easily explained
adapting a previously developed model of equiaxed solid
cation @34#. In this model, the liquid and solid inside th
spherical envelope are assumed to be uniformly at the m
ing temperature and any growth occurs by heat conductio
the envelope into the surrounding supercooled liquid. He
an energy balance at the envelope surface can be writte

Asphk
DT

d
5LrS Vsph

d fv

dt
1 f v

dVsph

dt D , ~4.16!

whereAsph is the surface area of the spherical envelope,k is
the thermal conductivity,L is the latent heat,r is the density,
DT is the supercooling, andd is a heat diffusion length.
Assuming quasisteady conditions and solving the differen
equation governing heat diffusion around a growing sphe
it can be shown that the temperature profile in the liqu

- FIG. 17. Volume fraction versus normalized growth distance
different envelopes.
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57 3187SCALING BEHAVIOR OF THREE-DIMENSIONAL DENDRITES
outside the envelope is of an exponential nature and the
diffusion length is given by@35#

d5F12expS 2
v t

2

a
t D G a

v t
5@12exp~22 Pet!#

a

v t
,

~4.17!

where Pe is the tip Pe´clet number andt is the dimensionless
time t5v tt/R5Z/R. Substituting Eq.~4.17! into Eq. ~4.16!
and making some rearrangements, we obtain

t

3

d fv

dt
1 f v5V@12exp~22 Pet!#21, ~4.18!

whereV5DT/(L/c) is the dimensionless supercooling a
c is the specific heat. For SCN,L/c523.8 K @4#. An initial
condition for Eq.~4.18! can be obtained by setting the vo
ume of six paraboloidal dendrite tips of lengthZ5v tt equal
to the volume of a spherical envelope of radiusv tt, which
yields thatf v51 at t54.5. However, we found that the so
lution is insensitive to the initial condition fort>10. For
t!1/Pe, an approximate solution of Eq.~4.18! can be ob-
tained by setting exp(22 Pet)'122 Pet and is given by

f v5
3

4

V

Pe
t21191.125S 12

V

6 PeD t23. ~4.19!

For t.20, the last term in Eq.~4.19! can be neglected, in
dicating that the volume fraction varies witht21. Within the
present supercooling range~see Table I!, the prefactor
(3V/4 Pe) ranges from 4.1 to 3.9, showing that the sup
cooling dependence is weak. In fact, for Pe!1 the Ivantsov
solution @23# behaves asV;Pe. Hence, within the self
similar regime 1!t!1/Pe, the approximate solution~4.19!
is indeed supercooling independent. Furthermore, the sca
exponent of21 from the approximate solution of the he
transfer model is reasonably close to the experimental v
~i.e., 20.9!.

In order to verify the above approximate solution and
illustrate the long-time behavior of the heat transfer mod
we also solved Eq.~4.18! numerically. Figure 18 shows th
model predictions computed for the four supercoolings u
in the present analysis~Table I! and compares them to th
experimental correlation~4.15b! as well as to the approxi
mate solutionf v'4t21. Although we plot the experimenta
correlation up tot5300, it should be kept in mind that it i
only valid up tot!1/Pe and that 1/Pe is smaller than 300
the higher supercoolings~e.g., 1/Pe5205 for DT50.609 K;
see Sec. IV A!. It can be seen that fort!1/Pe, the numeri-
cally predicted variation of the volume fractionf v with t is
virtually supercooling independent. The agreement betw
the numerical solution of the heat transfer model and
experimental correlation is good. For 30,t!1/Pe, the fit-
ting range of the present volume measurements, the sca
exponent that can be surmised from the plot of the numer
solution in Fig. 18 is closer to the experimental value
20.9 than to the value of21 from the approximate solution
given by the first term of Eq.~4.19!. Hence the heat transfe
model provides a reasonable explanation why the sca
exponent for the volume measurements~i.e., 2.1! @Eq. ~4.9!#
is somewhat larger than the theoretical value of 2~see Sec.
at
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IV C!. At larger times, corresponding tot>1/Pe the numeri-
cally predicted volume fraction variation becomes superco
ing dependent and approaches a constant value that is g
by

f v5V. ~4.20!

This result simply states that in steady growth of an equia
crystal, the sensible heat available in the supercooled me
converted into latent heat to produce a dendritic crystal o
certain internal solid volume fraction. Although the SC
dendrites in the IDGE were generally grown for several m
limeters in length, no experimental data are available
verify the predicted long-time behavior. Nonetheless,
good agreement at earlier times establishes considerable
fidence in both the present measurements and the mod
should be noted that variations of the above model are q
popular in the simulation of microstructures in equiaxed
loy castings@34#, but they have never been validated by e
perimental measurements, as is done here.

V. CONCLUSIONS

A detailed measurement of the morphology of pure s
cinonitrile dendrites is performed using images from the fi
microgravity flight of the IDGE to investigate the scalin
behavior of geometry parameters in three-dimensional d
dritic growth. The results presented in this paper show t
unique scaling relations exist between the geometry par
eters and the primary tip radius in steady growth. The sca
relations are valid in the nonlinear, self-similar sidebranc
ing region far from the primary tip 1!Z/R!1/Pe.

For the secondary arm envelope on the sidebranch pl
the envelope width~or the secondary dendrite tip position!
Xtip can be correlated to the distance away from the prim
tip Z according toXtip /R50.668(Z/R)0.859. This indicates
that the dendrite envelope growth is a shape-preserv
steady-state process. If the above relation is converte

FIG. 18. Measured volume fractions for a spherical envelope~a
comparison between theoretical prediction and measuremen
sults!.
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3188 57Q. LI AND C. BECKERMANN
parabolic tip coordinates, the length of the surviving seco
ary dendrite arms is found to vary linearly with distan
from the tip, which is in agreement with the analysis
Brener and Temkin@25#.

The projection areaF and the contour lengthU of a den-
drite on the sidebranch plane, after scaling byR2 and R,
respectively, have their own supercooling-independent r
tion with Z/R. After a transient stage, both of them can
described by a power law with the same exponent of 1
demonstrating the same time dependence. This result im
that the interfacial length concentrationU/F is time indepen-
dent, after some initial transient, and inversely proportio
to the tip radiusR. The exponent 1.7 is in reasonable agre
ment with the theoretical value of 1.6 derived by Brener a
Temkin @25#.

Calculations of the volumeV and the surface areaA of a
dendrite, based on the experimental measurements and
approximations, show that these parameters can also
scaled to the tip radiusR. The scaling exponent for the vo
ume is close to the theoretical value of 2. The interfacial a
sio
ra
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concentrationA/V, deduced from the above calculation
demonstrates a relatively weak time dependence. Avera
over time,A/V shows a similar behavior and the same ord
value as the interfacial length concentrationU/F.

Solid volume fractions for two different envelopes~a fit-
ting envelope and a spherical envelope! have also been esti
mated. In our measurement range, the volume fractions
these two envelopes decrease with the normalized gro
time v tt/R in a supercooling-independent manner. For t
spherical envelope, the volume fraction variation based
the measurements is in good agreement with predicti
from a simple heat transfer model.
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